Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Anwar Usman, ${ }^{a}$ Yun Li, ${ }^{\text {b }}$ Yan Zhang, ${ }^{\text {b }}$ Hoong-Kun Fun ${ }^{\text {a }}$ and Jian-Hua Xu ${ }^{\text {b }}$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ Department of Chemistry,
Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.119$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl 3-benzoyl-8-hydroxy-5-methoxy-indolizine-1-carboxylate

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{5}$, the methoxycarbonyl substituent, disregarding H atoms, is almost coplanar with the indolizine ring system in each of the two crystallographically independent molecules in the asymmetric unit. In the crystal structure, symmetry-related molecules form molecular dimers, held together by two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and are interconnected into a three-dimensional network by another $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Comment

Photoinduced oxygenation reactions of indolizine derivatives have been intensively investigated (Tian et al., 2001). In continuation of this work, we prepared the title compound, (I), by photoinduced oxygenation of 1-acetyl-3-benzoylindolizine. As part of this work, we report here the crystal structure of (I).

(I)

The asymmetric unit of (I) consists of two crystallographically independent molecules, A and B. These are related by a local twofold axis, coupled with a shift of $2.15 \AA$ parallel to this axis. The bond lengths and angles in the two molecules (Fig. 1) are in good agreement with each other, and the values are within normal ranges (Allen et al., 1987).

In both molecules, A and B, the methoxycarbonyl groups (O3/O4/C9/C10) are almost coplanar with the indolizine ring system. The plane of the methoxycarbonyl group is twisted about the $\mathrm{C} 8-\mathrm{C} 9$ bond by an angle of $5.8(1)^{\circ}$ in molecule A and by an angle of $5.1(1)^{\circ}$ in molecule B. Coplanarity is maintained by an intramolecular $\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3$ hydrogen bond, linking the methoxycarbonyl and hydroxyl group (Fig. $1)$. The methoxy group ($\mathrm{O} 2 / \mathrm{C} 11$), attached at atom C 3 , is slightly twisted out of the plane of the indolizine system, with a similar orientation in both molecules. The $\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 2-\mathrm{C} 11$ torsion angles are 24.3 (2) and 18.7 (3) ${ }^{\circ}$ in molecules A and B, respectively, indicating that the methoxy group tends to deviate from coplanarity with the attached aromatic ring, as commonly observed in anisoles (Domiano et al., 1979).

The relative configuration of the benzoyl substituent (O5/ $\mathrm{C} 12-\mathrm{C} 18$) with respect to the indolizine is influenced by the

Received 8 November 2002
Accepted 19 November 2002 Online 30 November 2002

Figure 1
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
Packing diagram of the title compound, showing the formation of dimers.
$s p^{2}$ hybridization of atom C 12 . In molecule A, the $\mathrm{C} 2-\mathrm{C} 12-$ C13 angle is $121.3(1)^{\circ}$, while the dihedral angle between the aromatic rings of the benzoyl group and the indolizine system is $64.6(1)^{\circ}$. In molecule B, the corresponding values are 119.9 (1) and $61.8(1)^{\circ}$, respectively. In the benzoyl substituent, atom O5 is out of the plane of the aromatic ring, such that the $\mathrm{O} 5 / \mathrm{C} 2 / \mathrm{C} 12 / \mathrm{C} 13$ plane is twisted from the plane of the aromatic ring by an angle of $34.5(1)^{\circ}$ in molecule A and by an angle of $26.4(1)^{\circ}$ in molecule B.

In the crystal structure, two symmetry-related A molecules and two symmetry-related B molecules form molecular dimers (Fig. 2), by intermolecular $\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 3$ hydrogen bonds (Table 2). The dimers are interconnected into a threedimensional network by $\mathrm{C} 11 A-\mathrm{H} 11 A \cdots \mathrm{O} 1 B^{\mathrm{i}}$ hydrogen bonds [symmetry code: (i) $2-x, 1-y,-z$].

Experimental

The title compound was isolated from the reaction mixture of the photooxygenation of 1-acetyl-3-benzoylindolizine in methanol by column chromatography on silica gel. Single crystals, suitable for X-
ray crystallographic measurements, were prepared by slow evaporation of the solvent from a petroleum ether-acetone solution (1:1 $v / v)$.

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{5}$

$$
Z=4
$$

$M_{r}=325.31$
Triclinic, $P \overline{1}$
$a=9.0670(4) \AA$
$b=11.3774(5) \AA$
$c=15.9752$ (8) \AA
$\alpha=75.294$ (1) ${ }^{\circ}$
$\beta=76.127(1)^{\circ}$
$\gamma=87.458(1)^{\circ}$
$V=1547.26(12) \AA^{3}$
$D_{x}=1.397 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5941
reflections
$\theta=2.3-28.3^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.50 \times 0.50 \times 0.42 \mathrm{~mm}$

Data collection

Siemens SMART CCD area-
detector diffractometer

ω scans

Absorption correction: none
9032 measured reflections 6518 independent reflections

5445 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-14 \rightarrow 11$
$l=-20 \rightarrow 11$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0611 P)^{2} \\
&+0.333 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 A-\mathrm{H} 1 A A \cdots \mathrm{O} 3 A$	$0.93(2)$	$1.71(2)$	$2.629(2)$	$175(2)$
$\mathrm{O} 1 B-\mathrm{H} 1 B A \cdots \mathrm{O} B$	$0.95(2)$	$1.68(2)$	$2.614(2)$	$165(2)$
$\mathrm{C} 11 A-\mathrm{H} 11 A \cdots \mathrm{O} 1 B^{\mathrm{i}}$	0.96	2.40	$3.167(2)$	137
$\mathrm{C} 18 A-\mathrm{H} 18 A \cdots \mathrm{O} A^{\mathrm{ii}}$	$0.94(2)$	$2.50(2)$	$3.423(2)$	$166(2)$
$\mathrm{C} 18 B-\mathrm{H} 18 B \cdots \mathrm{O} 3 B^{\mathrm{iii}}$	$0.95(2)$	$2.56(2)$	$3.493(2)$	$167(2)$

Symmetry codes: (i) $2-x, 1-y,-z$; (ii) $1-x,-y, 1-z$; (iii) $1-x, 1-y,-z$.

The H atoms were located in difference Fourier maps and were refined isotropically, except for those of methyl groups C10 and C11, which were geometrically fixed and treated as riding atoms, with $\mathrm{C}-$ H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})$ vales equal to $1.5 U_{\text {eq }}(\mathrm{C})$. Due to a large fraction of weak data at higher angles, the 2θ maximum was limited to 54°.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/ PFIZIK/610961. AU thanks Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Domiano, P., Nardelli, M., Balsamo, A., Macchia, B. \& Macchia, F. (1979). Acta Cryst. B35, 1363-1372.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Tian, J. Z., Zhang, Z. G., Yang, X. L. Fun, H.-K. \& Xu, J.-H. (2001). J. Org. Chem. 66, 8230-8235.

